Este libro propone una introducción cualitativa al estudio de las variedades diferenciables. Está basado en cursos que llevamos impartiendo durante muchos años en la Facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid. Una primera versión se publicó en 1999, y ha sido utilizada desde entonces de manera regular en la docencia de las materias que cubre. Aprovechando esa experiencia aquel primer texto ha sido objeto de ediciones sucesivas hasta llegar a esta sexta veinticuatro años después. A este respecto, hay que destacar y agradecer la disponibilidad de Sanz y Torres para hacer nuevas ediciones con las mejoras que consideramos necesarias. Tales mejoras tienen finalidades muy concretas: (i) unificación de notaciones y terminología; (ii) simplificación y clarificación de enunciados y demostraciones, (iii) inclusión de ejemplos adicionales con cálculos explícitos ilustrativos, (iv) mayor adecuación de las series de problemas de cada sección, (v) confección de una colección de cuestiones para evaluación rápida de las nociones básicas, y (vi) organización de un índice y un glosario suficientemente detallados. De naturaleza menos sistemática son las ampliaciones de contenido teórico, como añadir el teorema de la fibración de Ehresmann, o el recíproco del teorema de Stokes en cohomología de de Rham para definir el grado de Brouwer-Kronecker y formular el teorema de Gauss-Bonnet.